Hukum Aljabar Boolean & Tabel Kebenaran
(a)  A + B = B + A
Tabel Kebenaran
| A | B | A+B | B+A | 
| 0 | 0 | 0 | 0 | 
| 0 | 1 | 1 | 1 | 
| 1 | 0 | 1 | 1 | 
| 1 | 1 | 1 | 1 | 
(b) A. B = B .A
Tabel Kebenaran
| A | B | A B | B A | 
| 0 | 0 | 0 | 0 | 
| 0 | 1 | 0 | 0 | 
| 1 | 0 | 0 | 0 | 
| 1 | 1 | 1 | 1 | 
T2. Hukum Asosiatif 
(a) (A + B) + C = A + (B + C)
Tabel Kebenaran
| A | B | C | A+B | (A+B)+C | B+C | A+(B+C) | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
(b) (A B) C = A (B C)
Tabel Kebenaran
| A | B | C | A B | (A B) C | B C | A (B C) | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
(a) A (B + C) = A B + A
 
 
| A | B | C | B+C | A(B+C) | A B | AB+A | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
(b) A + (B C) = (A + B) (A + C)
 
 
| A | B | C | B C | A+(BC) | A+B | A+C | (A+B)(A+C) | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
(a) A + A = A
Tabel Kebenaran
| A | A+A | 
| 0 | 0 | 
| 1 | 1 | 
(b) A A = A
Tabel Kebenaran
| A | AA | 
| 0 | 0 | 
| 1 | 1 | 
T5.
(a) AB + AB’ = A
Tabel Kebenaran
| A | B | B’ | A B | A B’ | AB+AB’ | 
| 0 | 0 | 1 | 0 | 0 | 0 | 
| 0 | 1 | 0 | 0 | 0 | 0 | 
| 1 | 0 | 1 | 0 | 1 | 1 | 
| 1 | 1 | 0 | 1 | 0 | 1 | 
 
 
(b) (A+B) (A+B’) = A
Tabel Kebenaran
| A | B | B’ | A+B | A+B’ | (A+B)(A+B’) | 
| 0 | 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 0 | 
| 1 | 0 | 1 | 1 | 1 | 1 | 
| 1 | 1 | 0 | 1 | 1 | 1 | 
T6. Hukum Redudansi 
(a) A + A B = A 
Tabel Kebenaran
| A | B | A B | A+AB | 
| 0 | 0 | 0 | 0 | 
| 0 | 1 | 0 | 0 | 
| 1 | 0 | 0 | 1 | 
| 1 | 1 | 1 | 1 | 
(b) A (A + B) = A
Tabel Kebenaran
| A | B | A+B | A(A+B) | 
| 0 | 0 | 0 | 0 | 
| 0 | 1 | 1 | 0 | 
| 1 | 0 | 1 | 1 | 
| 1 | 1 | 1 | 1 | 
T7. 
(a) 0 + A = A 
Tabel Kebenaran
| A | 0+A | |
| 0 | 0 | 0 | 
| 1 | 0 | 1 | 
(b) 0 A = 0
Tabel Kebenaran
| A | 0 A | |
| 0 | 0 | 0 | 
| 1 | 0 | 0 | 
T8.
(a) 1 + A = 1 
Tabel Kebenaran
| A | 1+A | |
| 0 | 1 | 1 | 
| 1 | 1 | 1 | 
(b) 1 A = A
Tabel Kebenaran
| A | 1 A | |
| 0 | 1 | 0 | 
| 1 | 1 | 1 | 
T9. 
(a) A’ + A = 1
Tabel Kebenaran
| A | A’ | A’+A | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
(b) A’ A = 0
Tabel Kebenaran
| A | A’ | A’ A | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
T10. 
(a) A + A’ B = A + B
Tabel Kebenaran
| A | B | A’ | A’ B | A+A’B | A+B | 
| 0 | 0 | 1 | 0 | 0 | 0 | 
| 0 | 1 | 1 | 1 | 1 | 1 | 
| 1 | 0 | 0 | 0 | 1 | 1 | 
| 1 | 1 | 0 | 0 | 1 | 1 | 
(b) A ( A’ + B) = A B
Tabel Kebenaran
| A | B | ‘A’ | A’+B | A(A’+B) | AB | 
| 0 | 0 | 1 | 1 | 0 | 0 | 
| 0 | 1 | 1 | 1 | 0 | 0 | 
| 1 | 0 | 0 | 0 | 0 | 0 | 
| 1 | 1 | 0 | 1 | 1 | 1 | 
T11.Theorema De Morgan's 
(a) ( A + B)’ = A’ B’
Tabel Kebenaran
| A | B | A’ | B’ | (A+B)’ | A’B’ | 
| 0 | 0 | 1 | 1 | 1 | 1 | 
| 0 | 1 | 1 | 0 | 0 | 0 | 
| 1 | 0 | 0 | 1 | 0 | 0 | 
| 1 | 1 | 0 | 0 | 0 | 0 | 
(b) ( A B )’ = A’ + B’
Tabel Kebenaran
| A | B | A’ | B’ | (A B)’ | A’+B’ | 
| 0 | 0 | 1 | 1 | 1 | 1 | 
| 0 | 1 | 1 | 0 | 1 | 1 | 
| 1 | 0 | 0 | 1 | 1 | 1 | 
| 1 | 1 | 0 | 0 | 0 | 0 | 
 
 
Tugas 4.B
1.Give the relationship that represents the dual of the Boolean property A + 1 = 1?
(Note: * = AND, + = OR and ' = NOT) 
A * 0 = 0 ( answer )
2.Give the best definition of a literal? 
The complement of a Boolean variable ( answer)
A Boolean variable interpreted literally 
The actual understanding of a Boolean variable 
3.Simplify the Boolean expression (A+B+C)(D+E)' + (A+B+C)(D+E) and choose the best answer. 
A + B + C ( answer )
4.Which of the following relationships represents the dual of the Boolean property x + x'y = x + y? 
x'(x + y') = x'y' (answer )
5.Given the function F(X,Y,Z) = XZ + Z(X'+ XY), the equivalent most simplified Boolean representation for F is: 
Z + XYZ (answer )
6.Which of the following Boolean functions is algebraically complete? 
F = xy (answer )
7.Simplification of the Boolean expression (A + B)'(C + D + E)' + (A + B)' yields which of the following results? 
A'B' (answer )
8.Given that F = A'B'+ C'+ D'+ E', which of the following represent the only correct expression for F'? 
F'= (A+B)CDE (answer )
9.An equivalent representation for the Boolean expression A' + 1 is 
1 (answer )
10.Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results? 
AB (answer )
