Tugas 4.A
Hukum Aljabar Boolean & Tabel Kebenaran
T1. Hukum Komutatif
(a) A + B = B + A
Tabel Kebenaran
A
B
A+B
B+A
0
0
0
0
0
1
1
1
1
0
1
1
1
1
1
1
(b) A. B = B .A
Tabel Kebenaran
A
B
A B
B A
0
0
0
0
0
1
0
0
1
0
0
0
1
1
1
1
T2. Hukum Asosiatif
(a) (A + B) + C = A + (B + C)
Tabel Kebenaran
A
B
C
A+B
(A+B)+C
B+C
A+(B+C)
0
0
0
0
0
0
0
0
0
1
0
1
1
1
0
1
0
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
(b) (A B) C = A (B C)
Tabel Kebenaran
A
B
C
A B
(A B) C
B C
A (B C)
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
0
0
0
1
1
1
1
1
1
1
T3. Hukum Distributif
(a) A (B + C) = A B + A
A
B
C
B+C
A(B+C)
A B
AB+A
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
1
0
0
0
0
1
1
1
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
1
1
(b) A + (B C) = (A + B) (A + C)
A
B
C
B C
A+(BC)
A+B
A+C
(A+B)(A+C)
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
T4. Hukum Identity
(a) A + A = A
Tabel Kebenaran
(b) A A = A
Tabel Kebenaran
T5.
(a) AB + AB’ = A
Tabel Kebenaran
A
B
B’
A B
A B’
AB+AB’
0
0
1
0
0
0
0
1
0
0
0
0
1
0
1
0
1
1
1
1
0
1
0
1
(b) (A+B) (A+B’) = A
Tabel Kebenaran
A
B
B’
A+B
A+B’
(A+B)(A+B’)
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
1
1
1
1
1
0
1
1
1
T6. Hukum Redudansi
(a) A + A B = A
Tabel Kebenaran
A
B
A B
A+AB
0
0
0
0
0
1
0
0
1
0
0
1
1
1
1
1
(b) A (A + B) = A
Tabel Kebenaran
A
B
A+B
A(A+B)
0
0
0
0
0
1
1
0
1
0
1
1
1
1
1
1
T7.
(a) 0 + A = A
Tabel Kebenaran
(b) 0 A = 0
Tabel Kebenaran
T8.
(a) 1 + A = 1
Tabel Kebenaran
(b) 1 A = A
Tabel Kebenaran
T9.
(a) A’ + A = 1
Tabel Kebenaran
(b) A’ A = 0
Tabel Kebenaran
T10.
(a) A + A’ B = A + B
Tabel Kebenaran
A
B
A’
A’ B
A+A’B
A+B
0
0
1
0
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
(b) A ( A’ + B) = A B
Tabel Kebenaran
A
B
‘A’
A’+B
A(A’+B)
AB
0
0
1
1
0
0
0
1
1
1
0
0
1
0
0
0
0
0
1
1
0
1
1
1
T11.Theorema De Morgan's
(a) ( A + B)’ = A’ B’
Tabel Kebenaran
A
B
A’
B’
(A+B)’
A’B’
0
0
1
1
1
1
0
1
1
0
0
0
1
0
0
1
0
0
1
1
0
0
0
0
(b) ( A B )’ = A’ + B’
Tabel Kebenaran
A
B
A’
B’
(A B)’
A’+B’
0
0
1
1
1
1
0
1
1
0
1
1
1
0
0
1
1
1
1
1
0
0
0
0
Tugas 4.B
1.Give the relationship that represents the dual of the Boolean property A + 1 = 1?
(Note: * = AND, + = OR and ' = NOT)
A * 1 = 1
A * 0 = 0 ( answer )
A + 0 = 0
A * A = A
A * 1 = 1
2.Give the best definition of a literal?
A Boolean variable
The complement of a Boolean variable ( answer)
1 or 2
A Boolean variable interpreted literally
The actual understanding of a Boolean variable
3.Simplify the Boolean expression (A+B+C)(D+E)' + (A+B+C)(D+E) and choose the best answer.
A + B + C ( answer )
D + E
A'B'C'
D'E'
None of the above
4.Which of the following relationships represents the dual of the Boolean property x + x'y = x + y?
x'(x + y') = x'y' (answer )
x(x'y) = xy
x*x' + y = xy
x'(xy') = x'y'
x(x' + y) = xy
5.Given the function F(X,Y,Z) = XZ + Z(X'+ XY), the equivalent most simplified Boolean representation for F is:
Z + YZ
Z + XYZ (answer )
XZ
X + YZ
None of the above
6.Which of the following Boolean functions is algebraically complete?
F = xy (answer )
F = x + y
F = x'
F = xy + yz
F = x + y'
7.Simplification of the Boolean expression (A + B)'(C + D + E)' + (A + B)' yields which of the following results?
A + B
A'B' (answer )
C + D + E
C'D'E'
A'B'C'D'E'
8.Given that F = A'B'+ C'+ D'+ E', which of the following represent the only correct expression for F'?
F'= A+B+C+D+E
F'= ABCDE
F'= AB(C+D+E)
F'= AB+C'+D'+E'
F'= (A+B)CDE (answer )
9.An equivalent representation for the Boolean expression A' + 1 is
A
A'
1 (answer )
0
10.Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results?
ABCDEF
AB (answer )
AB + CD + EF
A + B + C + D + E + F
A + B(C+D(E+F))